Thermal Micro Actuators for Nanotechnologies

Thermography in MEMS micro actuators research

Microelectromechanical systems (MEMS) offer a wide range of possible applications in the field of nanotechnology. Everyday examples are the position recognition of mobile phones and the use in airbags, digital cameras or pacemakers. Other applications can be found above all in the field of miniaturised medical diagnostics. Growing demands on miniaturisation affect both the system solutions required for this and the sensors and control elements to be developed.

Further information about ImageIR® 9300

InfraTec Solution

Chemnitz University of Technology
Professorship of Microsystems and Biomedical Engineering

www.tu-chemnitz.de/etit/microsys/index.php

Dr. Sebastian Voigt

Thermal Imaging System
ImageIR® 9300 infrared camera

Micromechanics as support for future nanotechnology applications

The Professorship of Microsystems and Biomedical Engineering at the Chemnitz University of Technology is working on MEMS-based micro actuators that are intended to serve as a control platform for analyses of nanocomponents and are only a few micrometres in size. Similar to conventional electromechanical positioning tables with three degrees of freedom, the aim is to enable high precision of horizontal or vertical movement of nanocomponents.

ImageIR® 9300 and thermography on miniaturised actuators

The professorship was able to transfer 20 years of experience gained in the domain of electrostatic actuators to thermally driven actuators. The latter allow the use of electron microscopes for MEMS analysis, which would not have been an option with electrostatic actuators. Prototypes for thermal actuators have already been developed at Chemnitz University of Technology enabling motion control with an accuracy of up to 2 µm and 0.3°.

Achieving such precision requires a precise analysis of the material parameters on the actuators used. As expected with thermal actuators, the most important factor is measuring the component temperature as accurately as possible. Due to the very small dimensions and mechanical characteristics of these measurement objects, only the most sophisticated infrared cameras come into consideration. A microscopic lens was selected and combined with the large infrared detector of the ImageIR® 9300 with (1,280 × 1,024) IR pixels to achieve a resolution in the µm range and a large field of view to capture the peripheral components around the actuators.

Diffraction-limited resolution

An ImageIR® 9300 with an M=8.0x microscope lens is used at Chemnitz University of Technology. With the spectral range of (1.5 ... 5.5) µm, this system reaches the limit of resolving power that is physically possible. Due to the experimental determination of the emissivity of individual test materials, the measured values obtained enable the determination of heat transfer coefficients and other material parameters. The evaluation is carried out with the IRBIS® 3 professional thermography software. In addition, a lock-in thermography test station with the InfraTec IRBIS® active solution is used for real-time active thermography. Since measurements are taken on silicon and aluminium, the emissivity coefficients are very low and require careful application of special correction models, a feature of the IRBIS® software used.

Results

The results presented illustrate the thermal processes within the MEMS structures very clearly. Nevertheless, details remain that need to be clarified:

  • Working on the redesign of the actuators to reduce thermal crosstalk of the components.
  • Searching for a measurement method for holistic motion detection based on automated image evaluation of thermal images.

Also in view is an attempt to quantify the thermoelastic damping in the MEMS springs at excitation frequencies up to approx. 10 kHz. These analyses also require the high-precision trigger interface of the ImageIR® 9300 in order to be able to follow quickly and precisely with the help of active thermography. At this point, the ability of lock-in thermography to display the smallest temperature differences will increasingly take effect.

Future applications will make even greater use of nanotechnological components, especially in the field of miniaturised medical diagnostics and analytics. The analyses presented and the use of the ImageIR® 9300 provide insights into the performance of MEMS components required for this purpose in order to advance their development.

Advantages of this Thermography Solutions in this Application

  • Learn more about the modular concept

    Modular Concept for Your Flexibility

    The camera can be adapted to all requirements of the user due to modular design of the camera series ImageIR®. This means that a customer-specific thermography system is achieved in every direction. But the ImageIR® can also be subsequently retrofitted or upgraded in the event of changing measurement requirements. In this way, maximum investment security is achieved.

  • InfraTec thermography - Thermal resolution

    Thermal Resolution – Determination of Differences of Only a Few Millikelvin

    For detection of small temperature changes InfraTec's infrared cameras offer thermal resolutions up to < 15 mK in real-time operation. By using the Lock-in Thermography method it is possible to further increase this resolution significantly. For this purpose test objects are periodically excited and non-destructively examined for defects and irregularities.

  • Integrated Trigger / Process Interface and Interfaces - Digitally Controlling of a Infrared Camera and External Devices

    The internal trigger interface guarantees highly precise, repeatable triggering. Each of the two configurable digital inputs and outputs are used to control the camera or to generate digital control signals for external devices. In this way, for example, the operation of a printed circuit board and the interval of a measurement can be synchronised.

    The selection of different camera interfaces allows the processing of analog data, such as the voltage directly through the camera and thus the insertion of this information into the thermal image data. Relevant variables can be included in the evaluations with the software, which makes it easier to draw conclusions about the causes of temperature changes.

  • InfraTec thermography - Geometrical Resolution

    Geometrical Resolution – Efficient Analysis of Complex Assemblies

    InfraTec's infrared cameras with cooled and uncooled detectors have native resolutions up to (1,920 × 1,536) IR pixels. Spatially high-resolution thermograms ensure that components and assemblies are imaged down to the smallest detail and thus defects can be reliably detected and precisely localised.

Relevant Industries & Applications

  • thermal imaging in electronics
    Electronics & Electrical Engineering

    Electronics & Electrical Engineering

    Measure temperature distributions of smallest electronic components with infrared cameras.

  • microthermography
    Micro-Thermography

    Micro-Thermography

    Micro-thermography allows for the thermal analysis of extremely small structures in the micrometer range, providing a detailed representation of the temperature distribution on complex electronic assemblies and components.